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Abstract: A new Bayesian approach to multistage hypothesis testing is considered. Prior
is derived using Jeffreys’ criterion on likelihood associated with the design information.
We show that the prior for sequential Bernoulli design asymptotically converges toward the
Jeffreys prior in Pascal sampling model. A general rule is given for determining the design-
corrected version of default priors when Jeffreys’ criterion results in improper distribution.
Based on the principle of design impartiality, the Bayes factor as posterior-based evidential
measure can be generalized to multistage testing, so that the decision boundaries reflect equal
evidence for hypotheses over stages. Effect of prior correction on design parameters and
on Bayesian inference upon test termination is studied. The approach is applied to a three-
stage binomial design. Last, the use of the prior as the default objective choice in multistage
hypothesis testing is discussed.

Keywords: Bayes factor; Frequentist characteristics; Jeffreys’ criterion; Likelihood principle;
Objective prior.
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1. INTRODUCTION

The supposed link between Bayes’ rule and the likelihood principle has long
obscured the issue of the stopping rule influence in Bayesian testing. However, the
argument that the design information has no inferential value (see, e.g., Berger and
Wolpert, 1988, p. 88) is not tenable for many experimenters. The so-called unified
conditional frequentist and Bayesian testing or unified testing (see Berger et al., 1994)
based on the Bayes factor offers an evocative example. The authors showed that the
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2 Bunouf and Lecoutre

Bayesian error probabilities of hypotheses are also valid frequentist risks conditional
on a partition of the outcome space. In the extension to multistage designs, Berger
et al. (1999) observed that the unified testing ignores the design information,
“seeming to lend frequentist support to the stopping rule principle.” Nevertheless,
it is well known that multiple looks at data affect the (unconditional) frequentist
risks in long-run sampling context. In the Bayesian setting, Rosenbaum and Rubin
(1984) studied the influence of data-dependent stopping rule on coverage probability
of confidence (or credible) interval, and Spiegelhalter et al. (2004, Section 6.6.5)
exhibited the impact on type 1 error in hypothesis testing.

However, based on a new formulation of Bayes’ rule, de Cristofaro (2004)
showed that explicit reference to the design is fully Bayesian justified and Bayesian
objectivity cannot ignore such information. In this article, the unified testing is
generalized to multistage designs using a design-corrected version of the Bayes
factor. The approach is based on prior derived using Jeffreys’ criterion on likelihood
associated with the design. The characteristics of the so-called corrected Jeffreys prior
(literally model-based Jeffreys prior corrected by the design information) and the
corresponding Bayes factor are studied in one-parameter problems. Among possible
candidate objective priors for multistage Bayesian analysis, the corrected Jeffreys
prior satisfies the principle of design impartiality, which is based on the property
of data-translated likelihood. Moreover, we show that Bayesian inference upon test
termination is corrected for the stopping rule influence.

The derivation of the corrected Jeffreys prior and characteristics concerning
existence and domination are presented in the next section. We show that the
corrected Jeffreys prior for sequential Bernoulli design asymptotically converges
toward the Jeffreys prior in Pascal sampling model. A general rule is given for
determining the design-corrected version of default priors when Jeffreys’ criterion
results in improper distribution. The corrected Bayes factor and the multistage test
are introduced in Section 3. Prior correction effect on design parameters is studied
in composite hypothesis testing for continuous observations. We also highlight a
risk of degeneracy phenomenon of the prior density in open design associated with
infinite stopping rule. Section 4 shows an application to a three-stage binomial
design. The application involves a study of the prior correction effect on the Jeffreys
confidence interval obtained upon test termination. In the conclusion, we return
to the role of the likelihood principle in experimental research. Then, we discuss
the use of the corrected Jeffreys prior as the default objective choice in multistage
hypothesis testing. Last, the extension to multiparameter problems is considered.

2. CORRECTED JEFFREYS PRIOR

We consider the K-stage design dex involving successive trials of n, i.i.d.
observations (1 < k < K) for inference on the one-dimensional parameter 0 € G.
Let X, be the outcome variable at stage k, we suppose that X® = (X, X,, ..., X})
is an independent sequence in the design dex, with a known density function
P (x¥ 10, dex) that satisfies minimum conditions of regularity. The sequence X®
takes values in the outcome space ¥ equipped with a o-algebra B®. Let 7 be a
stopping rule consisting of probabilities 7, (X®) of stopping after x* is observed.
We denote the stopping stage variable by M (i.e., 1, = Py(M = k)).
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Bayesian Multistage Hypothesis Testing 3

Most of Bayesians dealing with multistage designs are still reluctant to transgress
the stopping rule principle (i.e., inference does not depend on the stopping rule
that governs the experiment), in spite of explicit attempts to incorporate the
design information into priors (see, e.g., Bernardo and Smith, 1994). However, the
conditioning on the design is fully justified in the Bayesian approach. De Cristofaro’s
formulation of Bayes’ rule makes explicit reference to the design dex as a part of
the preexperimental evidence. Let ¢, contain the beliefs on the 0 values before the
experiment and let I, be a sequence of priors about 6, Bayes’ rule becomes

IL (0] x%, eq, dax) o< 1, (0| ey, dax)p (x| 0, €, dex). .1

Then, both the likelihood principle and its major consequence the stopping rule
principle are no longer an automatic consequence of Bayes’ rule. Moreover, (2.1)
shows that prior ignorance cannot be characterized without reference to the design.

Bayesian prior distribution allows recovering a part of the information
implicitly contained in the design and lost in the likelihood. The solution proposed
in this article is based on Jeffreys’ criterion, which agrees with the principle of
design impartiality (de Cristofaro, 2004): a design is impartial with respect to 0 if
the property of data-translated likelihood (i.e., the information on 6 is contained
in the likelihood location only) introduced in Box and Tiao (1992) is satisfied or
approximately satisfied. The use of Jeffreys’ criterion on likelihood associated with
the design yields a prior proportional to the naive (i.e., design-unrelated) Jeffreys
prior times E,/ (M) (see Govindarajulu, 1981).

Govindarajulu derived the prior from the design-associated likelihood

LA(0; x™, dox) = [L(0; x,)]" x -+ x [L(0; x)]""*.

Let 1(0| x"™) be the Fisher information about § contained in x based on the naive
likelihood L(0; x™). The Fisher information derived from the design-associated
likelihood is

52
I(0|x("’>, d®x) = —Eg[ﬁlogLA(G; xm d®1<)]
= 10| x)P,(M = 1)+ -+ 1(0| xO)Py(M = K)
- I(0|x1)[1 +2p M=)+ py M= K)]
n n
= 10| x,)Ey(M). (2.2)
The density of the corrected Jeffreys prior is proportional to 1(0 | x™, dex)'/2.
The corrected Jeffreys prior reflects the degree of certainty associated with the
projected design dex by overweighing the probabilities about 6 values more likely
leading to late termination. Greater is the certainty about a value of 6, higher is its

initial probability. Consequently, posterior-based inference on 0 is corrected for the
stopping rule influence.

2.1. Existence and Domination

The existence of the corrected Jeffreys prior I1¢V (0| ds«) requires the expectation
of M to be bounded. Then, if the density of the naive Jeffreys prior I17(0) is
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4 Bunouf and Lecoutre

integrable over ®, the corrected version is proper (i.e., [u d(II¥(0|dex)) < oo).
However, improper Jeffreys priors can be asymptotically approached by proper
corrected Jeffreys priors using truncation method.

We illustrate such truncation method in the Pascal (or inverse binomial)
sampling model associated with the design d,,,. The stopping rule in the design d,,
is infinite (i.e., Py(M < oo) # 1 a.s. when 6 — 0) and Jeffreys’ criterion results in the
improper Be(0, 1) prior distribution.

Theorem 2.1. Let us consider the K-stage Bernoulli design dg,«x for an experiment
based on successive Bernoulli trials Y, = 0,1 (k= 1, ..., K) with early stopping if the
outcome is observed (i.e., Y, = 1). The Pascal sampling model describes the distribution
of the outcome occurrence in dg,,ex when K — oo.

Proof. The corrected Jeffreys prior for the design dp,«« is
(0| dyyyor) < 072 (1—0) 2 (1+ (1= 0)+ -+ (1 — O)F)?

1_(1—9)K>5.

; (2.3)

=01(1 - e)é(
When K — oo, the proper density of the corrected Jeffreys prior for dj,,ex tends
to the improper density of the Jeffreys prior for d,,,, i.e.,

1
l}im Y0 | dg,ex) — I (0] dp,,) ~ Be(O, 5)

Formally, the stopping stage M'=inf{k:Y, =1ork=K} in dg,ex is a
truncation of the stopping stage in dp,,. |

Compared to the symmetric density of the naive Jeffreys prior Be(1, 1), the
unnormalized density in (2.3) assigns higher probabilities to the low values of 0 as
K increases. The corrected Jeffreys prior compensates the positive bias induced by
the stopping rule in the design dj,,ex on the maximum likelihood estimator (MLE),
which is 0t = 1/M.

The bias of the MLE in dg,,ex 1S

1 K 1 K 1
Ede’O(M) —0=Y (=00 —0=3(1-01"0 >0 (24)
k=1 k=2

Maxima of both the bias of the MLE (2.4) and the prior correction effect in (2.3) are
reached when K — oo. Then, the stopping stage M follows a geometric distribution
and the bias of the MLE is deduced from

. y_ 0 1
e\ ) =120 %0

In the regular case, naive Jeffreys prior pertains to a class of continuous and
positive densities that have polynomial majorants and benefit of good properties
for the derivation of proper posteriors (despite there is no general statement).
However, the naive Jeffreys prior is often improper when the parameter space is
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Bayesian Multistage Hypothesis Testing 5

unbounded. In that case, the corrected Jeffreys prior is also improper. The proof is
straightforward from (2.2). The corrective term E,(M)'/? is bounded and admits the
majorant function E,(M). Then, one easily derives a polynomial approximation of
E,(M)"2, which is function of the terms Py(M > k) (k =2, ..., K) and also contains
a constant term. Consequently, the corrected Jeffreys prior admits a mixture density
including the improper component d(IT’ (6)).

Various alternatives have been suggested when Jeffreys’ criterion results in
the improper uniform distribution such as in the normal case (see, e.g., Jeffreys,
1961). These alternatives are often proper ‘diffuse’ priors reflecting a status of
objectivity. Approximate design-corrected version of such default priors can be
obtained using the correction transposition rule, which consists in transposing the
corrective term from the improper Jeffreys prior to default priors. Unnormalized
densities are obtained by multiplying default prior densities by E,(M)'/?> borrowed
from the corrected Jeffreys prior (see an illustration in the next section). Jeffreys’
criterion imposes a condition on the parameter so that the likelihood locally and
approximately undergoes a translation for different observations. This condition
is maintained using the correction transposition rule if default prior densities are
sufficiently spread-out, so that their design-corrected versions satisfy the principle
of design impartiality.

The domination of the likelihood by the prior is another important
characteristic. In objective Bayesian analysis, the influence of naive priors is
usually low and disappears as the observed sample size increases. Conversely, the
correction effect of the corrected Jeffreys prior depends on the variation in 6 of the
likelihood relative to integral forms of p,(x® |0, dex) (k =1, ..., K — 1). The proof
is straightforward from (2.2). The corrective term E,(M)'/> depends on P,(M >
k) = [ier ooy (X570, dox)dx*=D (k =2, ..., K) where J® ' = J; x - x J,_; is
the k — 1-dimensional support of the outcome sequences.

3. CORRECTED BAYES FACTOR TEST

The recours to objective priors in hypothesis testing is limited as the division
of the parameter space in two disjoint subsets contradicts this concept (Robert,
2001). However, stopping rule favors one of the hypotheses if the parameter
subspace contains the 0 values that are the most associated with early termination.
Consequently, prior objectivity in the sense of ensuring equal support to hypotheses
shouldn’t ignore the design information.

The stopping rule is often based on the decision rule concerning hypotheses
such as in the familiar sequential probability ratio test (SPRT) introduced in Wald
(1947). Formally, the decision rule D takes values D, and D, such that the
events {D =D, NM =m} and {D = D, N M = m} are determined by x" for each
m. The density p, (x'™ |0, dsx) in the design dex is then the restriction of the
unique probability measure defined on the smallest sigma algebra containing all the
o-algebra % (k =1, ..., K) to the one associated with a termination at stage m.

The objectivist Bayesians prefer using the Bayes factor, noted B,, which is
irrespective of the relative prior weights of hypotheses. The multistage experiment
stops when B, provides enough evidence for decision-making. For the set of
composite hypotheses

Hy:0e®, versus H, :0e€®, (0,N06,=407),
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6 Bunouf and Lecoutre
the stopping stage is
M =min{k >1:B, ¢ (R, A) or k = K},

where the H, rejection region is such that {D = D, "M = m} = {B,, < R} and the
H, acceptance region is such that {D =D, "M =m} ={B,, > A} (R <1 < A).

The prior predictive distribution based on the corrected Jeffreys prior under
H; (i=0,1),Tg : B — [0, 1], describes an expectation concerning x*) associated
with the data generation process and the design, i.c.,

T (x| dex) = /@ P10, de) 1V (0] dox) . (3.1)

i

Subsequently, we define the corrected Bayes factor B’ as
BY =Tg!  (xV | dex) /T (x| dex).

The parameters of the design dex are determined by the test based on the
corrected Bayes factor in Definition 3.1. The reported errors are the posterior
probabilities of hypotheses.

Definition 3.1. Corrected Bayes factor test (CBFT)
If BY < R, stop, reject H, and report the error a(x® | dex) = B /(1 + BYY),
if B > A, stop, accept H, and report the error B(x® | dex) = 1/(1 + BY).
Otherwise, if k < K continue to stage k + 1, or if Xk = K make no decision.

When the stopping rule is finite, the Bayesian error probabilities of the CBFT
are also valid risks in the conditional frequentist approach (see, e.g., Berger et al.,
1997, Dass and Berger, 2003, for the extension to composite hypothesis testing).
The (ancillary) conditioning statistic is a one-one transformation of m that yields
a partitioning of the outcome sequences support in two subsets characterizing the
same evidence for H, and H,. The principle of combining Bayesian-frequentist
approaches in the unified testing was emphasized in Bayarri and Berger (2004).

However, the experimental design influences posterior-based evidential
measures such as the Bayes factor because early stopping happens only when
outcome sequence is sufficiently indicative of one hypothesis. Despite the stopping
rule, strict application of the likelihood principle imposes the use of naive priors.
Relaxing this principle, the corrected Jeffreys prior assigns higher density mass
to 0 values associated with later expected stopping stage relative to the naive
Jeffreys prior. Prior predictive distributions carry the prior correction to the
Bayes factor. Based on the principle of design impartiality, the corrected Bayes
factor is a valid evidential measure, so that the decision boundaries of the CBFT
reflect equal evidence for hypotheses over stages. The prior correction effect on
design parameters radically differs from the unconditional frequentist approach,
which aims at preserving nominal risks in long-run sampling context. The CBFT
generalizes the unified testing to multistage designs using appropriate priors.

As for any test based on the Bayes factor, a major issue with the CBFT
arises when prior is improper as the prior predictive distributions under hypotheses
in (3.1) cannot be derived. As mentioned in Section 2.1, if the naive Jeffreys prior
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Bayesian Multistage Hypothesis Testing 7

is improper, the corrected Jeffreys prior is also improper. Such situation can be
overcome with the use of default prior with flat or diffuse density. Then, its design-
corrected version is derived using the correction transposition rule.

This case is illustrated for a two-stage experiment involving two sets of 10
1.i.d. N(p, 1) observations to test the point null hypothesis H, : {u = 0} versus the
composite alternative H, : {y > 0}. The naive Jeffreys prior under alternative is
the improper uniform distribution. The default prior is the half normal HN(0, 2)
distribution, which is proportional to the normal N(0, 2) for positive values (see
arguments in Berger and Sellke, 1987). We set the values A = R~! = 5 and assign
equal prior probabilities to H, and H,. Let Z, be the mean at stage 1, Z, the mean
accrued until stage 2, and ® the cumulative distribution function of the standard
normal law. The density of the corrected Jeffreys prior is proportional to Eé/ . (M) =
(1 + ny/n, ®( /7 (Z, — w) € J,)))"/?, where J; is the interval for ,/m;Z, such that
Bf’ € (R, A). According to the correction transposition rule, the density of the
design-corrected HN(0, 2) prior is proportional to exp(—pu? /2)E,19/ *(M). Its derivation
requires an iterative procedure as the stopping rule is part of the prior. The curves
of prior and prior predictive densities under H, are displayed in Figure 1.

The prior correction causes an increase of prior predictive density mass for z,
(k =1, 2) generated by u values more associated with expected termination at stage
2. Let z;* and zf (k = 1, 2) be the boundaries of Z, for acceptance and rejection of
the null hypothesis, respectively. We obtain (z{, zf) = (—0.30, 0.66) and (z3, z¥) =
(—0.08, 0.69) in the corrected approach instead of (—0.20, 0.67) and (—0.03, 0.69)
in the naive approach.

Beyond the decision to ‘accept’ or ‘reject’ H,, experimenter is concerned with
the magnitude of the parameter irrespective of whether the test declares statistical
significance. In the long-run frequentist context, the departure of coverage function
from the nominal level is indicative of the stopping rule influence on confidence
(or credible) intervals. Let [0'°”, +o00) and (—oo, 0“P?] be the one-sided confidence
intervals and consider the sufficient bivariate statistic (M, Y,) where Y, is the
outcome accrued until stage m. The coverage functions of both intervals are

C"(0; dsx) = Py[0 = 0" (M, Y,)] and C“”(0; dsx) = P,[0 < 07(M, Y,)].
(3.2)

CORRECTED JEFFREYS PRIOR UNDER H1
PRIOR PREDICTIVE DISTRIBUTIONS UNDER H1

0 1 -1 0 1
Mu 7k

Figure 1. Naive (- - -) and design-corrected (—) HN(0, 2) prior densities under H, : {¢ > 0}
(left) and prior predictive densities in the support of z; under stopping at stage k = 1,2
(right) for the two-stage design with A = R~! =5 and n, = n, = 10.

F1
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8 Bunouf and Lecoutre

In (3.2), the prior correction corrects coverage function of the one-sided Jeffreys
confidence intervals for the stopping rule influence whatever 0 € O if, for any couple
of possible pairs (m, y,) and (m’, y,,), the ordering of the confidence limits is the
same using the naive and the corrected Jeffreys priors. This condition is satisfied
in many multistage designs for lattice data (see application to the binomial case in
Section 4).

3.1. Prior Correction Effect on Design Parameters

The case of open designs (K — oo) raises the question of the finiteness of the
stopping rule. This characteristic has been explored for the SPRT for a long
time. Stein (1946) showed that the stopping stage for testing point hypotheses
is exponentially bounded (i.e., satisfies Py(M > n) < cp" for some ¢ < oo and
0 < p < 1) except if the log probability ratio is degenerate at 0. In composite
hypothesis testing, Wald suggested a reduction to point hypothesis by means of
weight function. If a group of invariance transformations exists for such reduction,
Wijsman (1971) gave sufficient conditions on observation distribution for the
stopping rule to be finite. In this section, the effect of prior correction on parameters
of K-stage CBFT-based designs is studied as K increases. Then, we highlight a risk
of degeneracy phenomenon of the corrected Jeffreys prior in open design.

Theorem 3.1. The increase of K in K-stage CBFT-based symmetric design for
composite hypotheses of the type H,: {0 > 0,} versus H,:{0 < 0,} for continuous
outcome yields more conservative decision boundaries (i.e., wider non decision region).

Proof. Let d2)" be a K-stage symmetric CBFT-based design for continuous
outcomes X, with fixed values of A and R, such that A = R~!. To ease the reading,
the corrected Bayes factor in da" is noted Bf in this section, and #* denotes the
support of X® (k=1,...,K)such that A< Bf <R (k=1,...,K —1). We assume
that naive Jeffreys prior under hypothesis is not degenerate. In the parameter space,
o is the common boundary of the closures of ®, and ©,. We note by M(w, €) the
e-neighborhood of w defined as the set of all 0 € ® such that ||w — 0|| < €. Based on
a fixed positive scalar 4, we also introduce € in M(w, €X), which is the maximum
neighborhood width such that d(IT¥ (0| d5y")) > / whatever 0 € M(w, €¥)N O, (i =
0, 1). In the K + 1-stage design 42", the related quantities are BX*!, %X+, which
is the support of X® (k=1,...,K+1) such that A < Bf"' <R (k=1,...,K),
and €. We also define &%*!* as the K-dimensional restriction of #¥*! for X®
(k=1,...,K) in the design d>}",.

Relative to the design d2)", the additional stage K + 1 in 42, causes an
increase of E,(M) around 0 = w. The density mass of the corrected Jeffreys prior
concentrates so that if a sufficiently narrow neighborhood of w is considered, we
have the relation eX*! < €X whatever 4 > 0. Consequently, the density mass of both
prior predictive distributions under H, and H, increases for the set of X® that
provides the poorest evidence for hypotheses. This yields smaller amplitude of the
corrected Bayes factor (ie., [BSt' — 1| < |BX — 1], k =1,...,K) and extension of
the support of X® (k =1,...,K) (i.e., X € FE), a
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393 Corollary 3.1. The corrected Jeffreys prior associated with CBFT-based symmetric

394 design can degenerate in open design.

395

396 Proof. The proof follows the proof of Theorem 3.1. As K increases, the prior
397 correction assigns weight on narrowing neighborhood of w. If E,(M) does not
398 converge toward a finite function when K — oo, a degeneracy phenomenon of
399 the prior density occurs at 0 =w (i.e., €° — 0 whatever 4> 0). From (2.2),
400 the asymptotic behavior of E,(M) results from two opposite contributions when
401 going from the design doy" to doyt,: the term {ng,,/n,Py(M = K + 1)} generates a
402 ‘concentration effect’ around 6 = w whereas the other term {1 + n,/n,Py(M >2) +
403 -4 ng/nPy(M > K)} generates a ‘flattening effect’ caused by the extension of
404 FEH relative to FK. Convergence occurs if the flattening effect annihilates the
405 concentration effect as K increases. Degeneracy phenomenon of the corrected
406 Jeffreys prior in open design d5" is associated with infinite stopping rule.
407 Consequently, we have B — 1 (k =1, ...) and infinite extension of the support S*.
408 O
409

410

jg 4. APPLICATION TO THE BINOMIAL CASE

413 Let us note dy,,«x the K-stage binomial design involving sequences of independent
414 outcomes X, ~ Bin(0, n, = 10). The testing hypotheses are H, : {0 < 0.3} versus
415 H, : {0 > 0.3}. The design parameters are based on the values A =19 and R=1/19
416 associated with the nominal level o* = f* =0.05 for the type 1 and 2 error
417 probabilities.

418 Let Y, =Y, X, be the cumulated number of successes until stage k
35(9) (k=1,..., K), the boundaries of ¥, for acceptance and rejection of H, are noted y;
1] anq y,’f., respectively. The stppping rule is determined by P,(M > k) (k=2,...,K),
472 which is the sum of probabilities

423

424 p(x(i) | 9) = <n1) ... (n’> 0 (1 — g)m+=+ni=v

425 & i

426 . . . -

477 for x in the k — 1-dimensional support restriction

s S (0 <y <= Lk 1),

430

431 Table 1 shows the design boundaries of the naive test and the CBFT for the TI
432 3-stage design dy;,e and S-stage design dp;es.

433

434 . : :

435 Tal?le 1. Decision boundaries of the naive test and the CBFT for the

436 designs dpg;,e3 and dg;,es

437 S I S O R O O I O VO I )

jgg Naive test (1,6) (3,100 (5,14)  (8,18) (10,22

440 CBFT in dg,es  (0,6)  (3,11) (5, 14)

241 CBFT in dy,es  (0,7)  (2,11)  (5,14)  (7,18)  (10,22)
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10 Bunouf and Lecoutre

Although the scope of Theorem 3.1 limits to continuous outcome, the increase
of K value in the K-stage CBFT-based d;,ex design has the same influence on the
decision boundaries with an increase of the non decision region. The determination
of the set of the CBFT boundaries for the design dj;,«s reveals a practical issue in
the iterative process. The implementation in the prior of the design information with
(i, yF) = (0, 6) for the first stage results in the boundaries (y{', yf) = (0, 7), even
though the implementation of (y{', y¥) = (0, 7) in the prior results in the boundaries
(i, ¥%) = (0, 6). The boundaries (yi', yf) = (0,7) are kept as the first situation
appears to be the less contradictory.

Table 2. Bayes factor, test decision, and limits of the one-sided 95% Jeffreys confidence
intervals using approaches based on the naive and the corrected Jeffreys priors for all pairs
(m,y,) in dg,e design

Naive approach Corrected approach

(m,y,) B, H, 95% CI B, H, 95% CI
(1, 0) 248 Acc (0.0002, 0.171) 159 Acc (0.0002, 0.193)
(1, 1) 21.5 Acc (0.018, 0.331) - - -

2, 1) - - - 414 Acc (0.010, 0.191)
(2,2) 95.6 Acc (0.029, 0.250) 71.4 Acc (0.032, 0.260)
(2, 3) 24.8 Acc (0.056, 0.314) 19.9 Acc (0.061, 0.319)
3.4 96.9 Acc (0.057, 0.259) 75.8 Acc (0.061, 0.265)
(3, 5) 329 Acc (0.079, 0.299) 26.8 Acc (0.083, 0.304)
(3, 6) 13.4 ND (0.103, 0.338) 11.3 ND (0.107, 0.340)
3,7 6.21 ND (0.127, 0.375) 5.37 ND (0.132, 0.376)
(3, 8) 3.11 ND (0.153, 0.412) 2.75 ND (0.157, 0.410)
(3,9) 1.64 ND (0.180, 0.448) 1.47 ND (0.182, 0.444)
(3, 10) 0.870 ND (0.207, 0.482) 0.794 ND (0.208, 0.477)
(3, 11 0.455 ND (0.235, 0.516) 0.422 ND (0.236, 0.509)
(3, 12) 0.228 ND (0.264, 0.550) 0.216 ND (0.263, 0.541)
(3, 13) 0.107 ND (0.323, 0.582) 0.104 ND (0.291, 0.573)
(3, 14) 0.046 Rej (0.324, 0.614) 0.047 Rej (0.320, 0.604)
(3, 15) 0.018 Rej (0.354, 0.645) 0.019 Rej (0.349, 0.635)
(3, 16) 0.006 Rej (0.386, 0.676) 0.007 Rej (0.379, 0.667)
(3,17 0.002 Rej (0.418, 0.706) 0.002 Rej (0.409, 0.698)

(3.18)  55x10*  Rej  (0450,0.736)  6.5x107*  Rej  (0.440, 0.728)
(3,190  13x10% Rej  (0484,0.765) 17x10* Rej  (0.473,0.759)

(3. 20) - - - 37%x 105  Rej  (0.506, 0.788)
@, 10) 0.052 Rej  (0.324, 0.676) - - -

@, 11) 0.017 Rej  (0.370, 0.720) 0.018 Rej  (0.360, 0.708)
@, 12) 0.004 Rej (0417, 0.762) 0.005 Rej (0405, 0.753)
2. 13) 0.001 Rej (0467, 0.803) 0.001 Rej (0452, 0.796)

(2,14  19x10* Rej  (0.518,0.842) 24x10* Rej  (0.502, 0.837)
(2,15  27x105  Rej  (0.571,0878)  3.7x105  Rej  (0.557, 0.876)

(1, 6) 0.041 Rej  (0.347, 0.815) 0.047 Rej (0331, 0.802)
(1, 7) 0.007 Rej  (0.442, 0.883) 0.009 Rej  (0.418, 0.876)
(1, 8) 88 x 10  Rej  (0.547, 0.940) 0.001 Rej  (0.522, 0.938)

(1, 9) 57x107°  Rej  (0.669,0982)  82x1075  Rej  (0.653,0.982)
(1,10)  LIx10° Rej  (0.829,0.999)  1.7x106  Rej  (0.826, 0.999)

Acc = accept; ND = no decision; and Rej = reject.
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Figure 2. Coverage functions of the upper limit (top) and the lower limit (bottom) one-
sided 95% Jeffreys confidence intervals obtained using the naive (- - -) and the corrected (—)
Jeffreys priors in the CBTF-based dp;,e: design.

Table 2 presents global results using approaches based on the naive and the
corrected Jeffreys priors for all pairs (m, y,,) in the 3-stage design d;,+:. Bayes factor,
test decision, and limits of the one-sided 95% Jeffreys confidence intervals are given.

Coverage function of one-sided Jeffreys confidence interval for binomial fixed
sample was approached in Cai (2005). Figure 2 displays the coverage curves
of the one-sided 90% Jeffreys confidence intervals obtained using the naive and
the corrected Jeffreys priors in the CBFT-based d;,e: design. The curves present
discontinuities at the confidence limits of all pairs (m,y,). The stopping rule
influence on the coverage function of the upper limit confidence interval results in
under- and overestimation of the nominal level for increasing values of 0, and the
inverse for the lower limit confidence interval. This influence is more marked in
the neighborhood of the confidence limits of the stopping boundary pairs (k, yi')
or (k,y¥) (k=1,2). From Table 2, the ordering of the confidence limits of all
pairs (m, y,,) is the same using the naive and the corrected Jeffreys priors (Note:
confidence limits of the pairs (2, 1) and (3, 20) obtained using the naive Jeffreys prior
in the CBFT-based dy,,s: design are (0.0089, 0.180) and (0.518, 0.793), respectively).
Based on arguments developed in Section 3, the prior correction effect corrects
coverage functions for the stopping rule influence whatever 0.

The use of the corrected Jeffreys prior for point estimation is coherent if this
prior is already used for hypothesis testing and interval estimation. However, the
posterior mean estimator based on the corrected version of Haldane’s prior offers
an interesting alternative in terms of frequentist characteristics (see Bunouf and
Lecoutre, 2008). This prior is also derived using the Fisher information of design-
associated likelihood but the density is proportional to 1(0|x"™), dsx) instead of
1(0| x™, dex )'/* for the corrected Jeffreys prior.

T2

F2
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5. CONCLUDING REMARKS

Bayesian approach has never provided a satisfactory answer to the issue of the
stopping rule influence in multistage design. The supposed link between Bayes’ rule
and the likelihood principle (or its major consequence the stopping rule principle)
has long been a pill hard to swallow for experimenters willing to adopt Bayesian
methods. One may interpret that Bayesian designs are open to unscrupulous
manipulation as the experimenter is allowed to choose the stopping stage without
formal rule. As underlined by Spiegelhalter (2006), the controversy is illustrated in
a recent Food and Drug Administration (FDA) draft guidance (FDA, 2006), which
advocates that “the design of a Bayesian clinical trial involves pre-specification of
(and agreement on) both the prior information and the model. (...) A change (...)
at a later stage of the trial may imperil the scientific validity of the trial results.”

Based on de Cristofaro’s formulation of Bayes’ rule, objective Bayesian analysis
cannot depart from design considerations (de Cristofaro, 2004). Moreover, any
candidate prior should satisfy the principle of design impartiality and yield posterior
credible sets that have good frequentist coverage properties (de Cristofaro, 2008).
As mentioned in Kass and Wasserman (1996), assignments of prior probabilities
by formal rules cannot be expected to represent exactly total ignorance. However,
in this article we show that the corrected Jeffreys prior has the required properties
to be one of the default priors reflecting objectivity upon which everyone could
fall back when the design information is available prior to the experiment. A large
diffusion of this prior in multistage hypothesis testing will require further results
concerning the prior characteristics in open design and the prior correction effect
on design parameters for several common data distributions.

The extension of the corrected Jeffreys prior to multiparameter problems
requires further considerations. Jeffreys’ criterion for a p-dimensional vector ©
yields a prior density proportional to EZ*(M)IT/(®) where I1’(®) is the naive
Jeffreys prior of X, (Govindarajulu, 1981). Box and Tiao (1992, p. 53) showed
that the property of data-translated likelihood remains approximately valid, so that
the principle of design impartiality can be extended to multiparameter problems.
However, the issue of separation between parameters of interest and nuisance
parameters has raised controversies initiated by Jeffreys himself, which he answered
by suggesting a collection of ad hoc rules (Jeffreys, 1961). The importance of
this issue is amplified in the corrected Jeffreys prior due to the dependency
of the corrective term on the dimension of the whole parameter space. Several
authors have developed alternative priors, such as the reference prior based on
the maximum-entropy property (see, e.g., Bernardo and Smith, 1994). Design-
corrected version can be derived from the design-associated likelihood. Suppose that
0=(0),...,0) is a g-ordered group where the dimension of component 0,
is p; for 1 <i < g and assume that the stopping rule depends only on ©,. The
rule based on the maximum-entropy property yields a prior density proportional to
Eg)‘/ : (M)IT®(®), where IT¥(®) is the naive reference prior of X, (Ye, 1993). Reference
priors for some common multiparameter multistage problems are given in Sun and
Berger (2008). The dependency of the prior correction on the dimension of O,
provides a sound argument for using this prior in hypothesis testing, given that it
coincides with the corrected Jeffreys prior in one-parameter problems. However,
such a perspective requires an extension of the principle of design impartiality and
further research to assess the prior correction effect on testing design parameters.
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